Aug 27 2022

## Concentrated Group Action

There is another slightly different view in which the Coulomb field transmits when it comes to nuclei as parts of molecules, and that is by pulsating, concentrated Weyl groups or frames of a small conical angle, toward another nucleus. It is not wholly different from the last blog entry because spherical pulses could also be seen as groups, and for a given charge these concentrated groups are in addition to spherical groups.

When an O_{2} or N_{2} binuclear molecule forms, or let us say a benzene molecule, each nucleus senses the other nuclei closest. This is a strong repulsion, so the nuclei may start sending out groups concentrated toward the other nuclei for efficiency, while the electron cloud in between the nuclei offers attraction and keeps the molecule from flying apart. This also changes the Calabi-Yau structures within the nuclei.

For Coulomb attraction, a frame may wrap around another charge. For Coulomb repulsion, there may be partial contact and some backflush. As two close nuclei in a molecule sense each other, there may also be alternating, concentrated, group pulses between the two. This is likened to a synchronization between the nuclei, without the need for backflush. With phonon transmission this is a very fast process and transmits without intercepting electrons in orbitals. When we compare the size of nuclei and electrons to molecular size, there is a lot of empty space filled with gravitons, so this synchronization is reasonable.

In larger nuclei there are more compact spaces and more affine connections between them. For a nucleus we may call these irreducible representations, where the exception is fission, as a “reduced root system in V” ([1], pg. 461). The nuclear charge manufactures springboard groups repeatedly, with oscillations and accordion motion in multiple axes. A stable nucleus in a molecule is an isomorphism, though we must be careful here because as orientations change, there may be slight changes in structure. Particle colliders are excluded from this discussion.

A nucleus consists of involutive automorphisms, the summation adding to the entity’s spin, as it absorbs gravitons for the energy to send out groups or frames. Boothby calls these “inner automorphisms of G” ([2]. Pg. 237). A Weyl chamber is part of atomic mass, while a Weyl group transmits as a packet in the not so compact space of the gamma ray field.

We see that “π is a continuous and open mapping.” ([1], pg. 120]. In certain areas of deep space we may call this Riemannian globally symmetric space I, with perfect sine waves and no circular polarization. “Riemannian globally symmetric spaces of type II” ([1], pg. 516) are due to the bi-invariant structure of the Coulomb field. In both cases there is a “strong orthogonality” ([1], pg. 576) which produces a polarization factor of 2, as used in the blackbody radiation formula and in G = 4hf/3. π may be called a free graviton, since it is one half wavelength long.

As far as the Coulomb field produced by an electron in an atomic or a molecular orbital: “Let N_{0} be a bounded star-shaped open neighborhood of 0 ϵ g which exp maps diffeomorphically onto an open neighborhood N_{e} of e in G.” ([1], pg. 552) Let e be the electron, star-shaped be the lobes of orbitals, and exp be the growth of an orbital electron in size and charge. The increase in size of an electron in the orbital enables it to absorb more gravitons at a given time, thus increasing gravitational pull in the second half of the arc.

[1] Helgason, Sigurdur, “Differential Geometry, Lie Groups, and Symmetric Spaces”, American Mathematical Society, 2012

[2] Boothby, William M., “An Introduction to Differentiable Manifolds and Riemannian Geometry”, Academic Press, 2003