Oct 05 2022

The Vector Potential

In electrodynamics we find that “A quantum-mechanical description of photons necessitates quantization of only the vector potential” ([1], pg. 242), as in the summation of all the manifolds of gravitational fields at a given location. In a more densely packed summation of manifolds, the action of an electric charge will have a lesser rotational effect on the electric fields of the gamma rays than on a less dense field. The power of the rotation is the same in either field however, as long as we are referring to a gravitational field that is not too sparse for electric fields to propagate.

“The definition of B = ∇ x A specifies the curl of A, but it doesn’t say anything about the divergence – we are at liberty to pick that as we see fit, and zero is ordinarily the simplest choice.” ([2], pg. 235) The reason we may pick the divergence as zero is that the manifolds “are frozen in time for phonon transmission”:


As far as group action, Mackenzie [3] calls these “groupoids”, such as an ellipsoid, a spheroid, or another 3-dimensional shape. The definition of a spheroid I find is that it is like a sphere, but not a perfect sphere, and in the present case we have “oscillations and accordion motion in multiple axes”:


On a side note, though related to manifolds of gravitational fields, the Nobel Prize in Physics is being given this year for essentially this:


[1] Jackson, J. D., “Classical Electrodynamics, Third Edition”, c. 1999 John David Jackson, John Wiley & Sons, Inc
[2] Griffiths, David J., “Introduction to Electrodynamics, Third Edition”, c. 1999, Prentice-Hall, Inc.
[3] Mackenzie, Kirill C. H., “General Theory of Lie Groupoids and Lie Algebroids”, c. 2005 Kirill C. H. Mackenzie, London Mathematical Society

No responses yet

Trackback URI | Comments RSS

Leave a Reply