Archive for January, 2023

Jan 29 2023

Magnetic Fields as Effecting Coulomb Groups

An electric field of an electromagnetic wave does the work to extend the magnetic field of the same wave. What makes the electric field turn around must have something to do with running out of energy to extend the magnetic field further. Griffiths says: “Magnetic forces do no work” ([1], pg. 207), and that is why it is said that transmission of the Coulomb field is “a diffeomorphism on the electric fields of the gamma rays”:

https://www.fruechtetheory.com/blog/2022/03/29/transmission-of-the-coulomb-field/

Magnetic fields can act as guides however, and can help hold together a groupoid in the gamma ray field so it can act transitively. There is “energy stored in the magnetic field” ([1], pg. 317] and “Magnetic forces may alter the direction in which a particle moves, but they cannot speed it up or slow it down.” ([1], pg. 207) It is the same in Coulomb groups, spherical or concentrated, that carry the Coulomb field, – there are electric currents that are altered in direction by magnetic fields. Another example of this is gravitational lensing.

An involution may be a charged particle, or nucleus, with mass, as it absorbs gravitons for the energy to send out Coulomb groups, or it may be a Coulomb group itself in an open field. As a spherical group travels, for example, it takes on new gamma rays and leaves some behind, and the new gamma rays may be called an involution as they become part of the Coulomb group.

When it is said that with Coulomb phonon transmission, the gamma rays are “frozen in time” up to “10 meters at least”:

https://www.fruechtetheory.com/blog/2022/03/29/transmission-of-the-coulomb-field/ ,

it is in relation to travel, though they may travel a miniscule amount. It is torsion that transmits the Coulomb field, and the angular velocity, ω, is higher the stronger the field.

In a Cartan decomposition, “g1 = t1 + p1 and g2 = t2 + p2“ ([2], pg.517), p is the peak point of the electric field of a graviton. In a Riemannian globally symmetric space of type I, p follows the peak of a sine wave, and it also follows the peak in a Riemannian globally symmetric space of type II.

[1] Griffiths, David J., “Introduction to Electrodynamics”, Prentice Hall, 1999

[2] Helgason, Sigurdur, “Differential Geometry, Lie Groups, and Symmetric Spaces”, American Mathematical Society, 2012

No responses yet

Jan 17 2023

Action of the Electric Field

When a molecule is formed, each nucleus senses the one(s) closest by its spherical pulses. Then each nucleus starts sending out alternating concentrated groupoids toward the nearest nuclei in the molecule.

In a Coulomb attraction, the groupoid decides how to bisect by the spin of a target. The two brackets then compress against other gamma rays and subsequentially spring back and squeegee along the backside of the target in what is called a pullback. Past the target, the brackets “re-emerge as action morphisms of Lie algebroids” ([1], pg. 152), and join a spherical group.

The scalar potential has units of J/s, which is energy per time. The electric field has units of N/C, and Force = mass x acceleration per Newton’s second law. The acceleration is less for a larger mass of charge, and there are neutrons in most nuclei which makes the effect greater. The electric field travels faster the denser a gravitational field is, though the speed difference may not be discernable.

We can have “a π-saturated open set” ([1], pg. 97) with “saturated local flow”, though the gravitons will be at various phases on sine waves when an electric field comes through. Thus, in terms of analytic coordinates, “such coordinates do not usually exist for Lie groupoids.” ([1], pg.  pg. 142) What we have is an infinitesimal zigzag pattern, though when we back out to the classical level, it does not matter for any application.

As said earlier, Coulomb repulsion acts on the frontside of another charge. The electric field travels much faster than the charged mass it pushes, in part due to inertia, so likewise, after the push, the brackets join another spherical group behind the target. A nuclear concentrated groupoid may join a spherical groupoid once it passes a target.

In both cases, Coulomb attraction or repulsion, the spherical group from which the brackets came mends itself.

[1] Mackenzie, Kirill C. H., “General Theory of Lie Groupoids and Lie Algebroids”, c. 2005 Kirill C. H. Mackenzie, London Mathematical Society

No responses yet