Archive for the 'Astrophysics' Category

Jun 15 2017

Space not empty

Published by under Astrophysics

Space is not empty, you idiots.

https://www.washingtonpost.com/news/speaking-of-science/wp/2017/06/15/quantum-entanglement-sciences-spookiest-phenomenon-achieved-in-space/?utm_term=.e2e7a74f3440

 

No responses yet

Feb 09 2017

E = mc^2

It occurred to me in January or February 2008, during my first foray into Quantum Mechanics, that the reason there is no 1/2 factor in front of mc^2 in Einstein’s formula E=mc^2, – like there is in the Newtonian formula for kinetic energy K. E. = (1/2)mv^2, is that there are gravitons inside a fundamental particle that are bouncing back and forth against gravitational pressure on the outside, which doubles the energy.

No responses yet

Jun 02 2016

They still do not get it

Published by under Astrophysics

Probably will long be gone before those prideful and arrogant physicists begin to understand.  The Milky Way is expanding at an ever increasing rate.  Gravitons keep escaping, and the rate of expansion will slowly increase.  Take the measurements next year and then adjust the calculations.

 

Here is another item that shows what is meant:

http://news.berkeley.edu/2016/06/02/universe-expanding-faster-than-expected/

 

No responses yet

Dec 18 2015

Luminiferous Aether

Published by under Astrophysics

In “A Fight for the Soul of Science”, by Natalie Wolchover, found here: https://www.quantamagazine.org/20151216-physicists-and-philosophers-debate-the-boundaries-of-science/, it is stated that Helge Kragh was at the recent meeting at Ludwig Maximilian University in Munich, and “spoke about the 19th-century vortex theory of atoms.” At that time, more than 115 years ago, it was apparently “postulated that atoms are microscopic vortexes in the ether, the fluid medium that was believed at the time to fill space.”

The luminiferous aether theory preceded the Rutherford / Bohr model of the atom, so atoms were thought of as chemistry’s most discrete particles and not as nuclei with orbiting electrons. The concentrated particles were later separated into nuclei and electrons, and these can once again be thought of as vortexes in a gravitational medium that is so thick with gravitons that the medium could be called the aether.

Part of the present problem with physics is that the ideas did not historically come together with perfect timing, and were not studied together. Now, in 2015, we cannot see the forest for the trees.

No responses yet

Apr 08 2014

Dark Matter

Published by under Astrophysics

My high school biology teacher used to call brain matter “dark matter”.  Scientists are using their ‘dark matter’ to hypothesize that they are looking at dark matter with the abundance of gamma rays coming from the center of our galaxy:  http://www.scientificamerican.com/article/dark-matter-wimps-fermi-milky-way/

You will notice that the energies spoken of in the article are three to ten times higher than gravity.  With the density of gamma rays coming in, some coincident with the same energy, and with a factor of 2 for plane polarization, it is not unreasonable that graviton readings are combined.  It is likely that the scientists are looking at gravitons from a concentration of conventional mass at the center of the galaxy.

No responses yet

Jan 07 2014

A Gravitational Lens

Published by under Astrophysics

The Fermi Gamma Ray Space Telescope web site has an article about gravitational lensing by “a face-on spiral galaxy – one very much like our own – about 4 billion light years away.” *  This has been written about by a number of news sources, and I first found it on Google News.

A comment that comes from Stefan Larsson, an astrophysicist at Stockholm University in Sweden, is:

“Over the course of a day, one of these flares can brighten the blazar by 10 times in gamma rays but only 10 percent in visible light and radio, which tells us that the region emitting gamma rays is very small compared to those emitting at lower energies.”

Gamma rays at and near 312.76 MeV would be the most abundant of all light rays in the universe.  Coming from all atomic and molecular mass in the universe, they would be of the highest emission and absorption.  There is a much greater flux density of gamma rays coming from concentrated volumes of these types of mass than the scientific community currently expects.

The article appears to say that the data was taken by the LAT, not the GBM.  With the lensing being discussed, what we have is a lot of gravity bending gravity.

* http://www.nasa.gov/press/2014/january/nasas-fermi-makes-first-gamma-ray-study-of-a-gravitational-lens/

No responses yet

Dec 07 2011

Black Hole Entropy

Published by under Astrophysics

For those of us who are not anywhere close to being experts on black holes, we can still use our imaginations and think about such things when news comes up.  Evidently, two more super massive black holes, said to be billions of times more massive than the sun, have been found [1].

As far as black holes being black, it is because light entering does not escape them.  Within black holes, and for great distances without, not only would extremely intense magnetic fields change the direction of light travel, it may be that black holes are able to absorb a very high percentage of all incoming electromagnetic energy, utilizing it to maintain and increase structure.  We know from Griffiths and others that “magnetic forces do no work” [2], therefore the energy required to do the work to maintain all aspects of a black hole must come from internal currents and absorbed energy from outside.

If permitted, we can imagine a black hole as a lattice made up of neutron stars.  This does not mean that all neutron stars are the same size, or that all black hole lattices are built the same way.  Each black hole ‘crystal’ structure may be unique.  Spectral distribution of available incoming electromagnetic energy and the sum total of this energy over a period of time are two factors that may come into play.  Most of the electromagnetic energy coming into a black hole at the center of a galaxy cannot escape out the other side, which would contribute to the accelerated expansion of the galaxy.  Entropy may be decreasing for a time within a black hole, seemingly violating the Second Law of Thermodynamics, though the entropy of the entire galaxy, including the black hole, would be increasing.

It may be that as a black hole is concerned, there is very little gravity acting on objects outside the black hole, or none at all.

 

[1] http://abcnews.go.com/blogs/headlines/2011/12/two-largest-black-holes-in-universe-discovered/

[2] Griffiths, David J., Introduction to Electrodynamics, Third Edition, Prentice-Hall, Inc., 1999, pg 236

No responses yet

Dec 02 2011

Gamma Ray Burst of Christmas Day 2010

Published by under Astrophysics

As a comet approaches a neutron star, areas of an intensely strong magnetic field can dissolve parts of the comet.  A comet on a direct path that actually collides with the neutron star may penetrate into the neutron lattice, first as a tidal disruption, and then passing through the neutron star and smashing much of it into pieces of a neutron star, along with free neutrons, as it goes.  Each free neutron would decay into a proton, an electron, and an antineutrino, around 15 minutes after gaining its freedom.  In the case of the sustained gamma ray burst which reached earth on December 25, 2010 from the direction of the Andromeda constellation, before which “a comet or asteroid crashed into a neutron star” [1], antineutrinos would have been among the electromagnetic waves reaching the NASA Swift Burst Alert Telescope [2].  This particular gamma ray burst lasted about one half hour.

Gamma rays emitted as antineutrinos from free neutron decay are often between 15 and 340 keV in energy [3].  The gamma rays that BAT read were in the keV range and have nothing to do with gravity at 313 MeV.  The collision would likely have been due to a coincidence of independent path and time since a neutron star that is made up only of neutrons would have no gravitational pull.

 

[1] http://www.csmonitor.com/Science/2011/1130/The-mystery-of-the-humongous-Christmas-space-explosion

[2] http://swift.gsfc.nasa.gov/docs/swift/about_swift/bat_desc.html

[3] http://www.nature.com/nature/journal/v444/n7122/abs/nature05390.html

No responses yet

Oct 06 2011

Dark Energy

Published by under Astrophysics

A prize to be distributed amongst three individuals was announced this month, for the discovery in 1998 that the universe is expanding at an accelerating rate.

According to gamma ray energy exchange, one of the places the cause of this is explained is in the February 2008 YouTube interview.  Many gravitons escape into deep space and seldom or never encounter mass.  Those that do encounter mass can often serve as conjugate wave gravitons and then continue on in their paths.  The concept of dark energy to explain the accelerating expansion of the universe is therefore not needed.

Many articles are available for reading news on the prize.  Here is just one:

http://www.theregister.co.uk/2011/10/04/nobel_prize_physics_2011/

No responses yet

Sep 01 2011

Fermilab Magnets

With the Fermilab Tevatron shutting down this month, I wonder if its magnets could be used for a space debris vacuum.  The problem pops up in the news periodically, and did again today: 

http://www.usatoday.com/tech/science/space/story/2011-08-31/Solutions-sought-for-growing-space-junk-problem/50207662/1

2 responses so far

Next »