Archive for the 'Quantum Field Theory' Category

Mar 29 2022

Transmission of the Coulomb Field

The gamma ray field we live in is extremely rich and dense.  For the forms we find in nuclei and assorted particles, there is all the energy needed to drive all physical processes.

A Calabi-Yau shape within a nucleus or particle needs an external energy supply to maintain it. Gravity provides the energy. Here, we are talking about force and pressure within a nucleus or particle, with only indirect connection to the outside, or connection at a point, curve, or surface.  There may also be tears joining and reforming.

Occasionally we refer to neutrons, protons, electrons, and nuclei.  A proton can be a hydrogen nucleus, though we list it separately when we talk about free protons, such as in the solar wind, particle colliders, or elsewhere.  Let’s take an Oxygen nucleus for example with the makings of 8 protons and 8 neutrons. Inside the nucleus, at the top, parachutes with baskets attached through ropes, or strings, instead of a parachutist, may cause some gravitons to loop around the insides of the parachutes, or branes, and into the baskets with enough force to hold the parachutes against the highest flux density of gravitons. Then the gravitons would find ways to tunnel through the baskets, pushed from behind.  In the motions of O2 in air, the parachutes may slide around to stay opposite the maximum flux.

This may also help explain weak interaction parity violation, because as an electron forming within a nucleus tries to escape, out the bottom is easier, due to escape out the top involving going through the gaps in the parachutes.  More than 50% would come out downward.

The manifold of the sun’s gamma ray field, the manifold of the earth’s gamma ray field, and likewise with other celestial bodies, provides a combination of symmetric spaces. During the day, at noon let’s say, the vectors of the sun’s manifold are in the opposite direction as the vectors of the earth’s terrestrial manifold. The Coulomb field uses all vectors of all manifolds to propagate, because all vectors, within a distance of 10 meters at least, are frozen in time for phonon transmission.

Let’s say M1 is the earth’s manifold, and M2 is the combination of the earth’s and sun’s manifolds. “…a diffeomorphism F: M1 → M2 of manifolds oriented by Ω1, Ω2, is orientation-preserving if F*Ω2 = λΩ1, where λ > 0 is a C function on M.” ([1] pg. 209) In our example here, λ > 1, and we have neglected the earth’s moon for simplification.

We may call a negative charge a left coset space, and a positive charge a right coset space. Each creates its own homomorphism in the dense gamma ray field, by a diffeomorphism on the electric fields of the gamma rays.  For one thing, there is circular polarization. For another, perpendicular to the greatest flux density of gamma rays the electric fields of the gamma rays may have skewed sine wave lobes, somewhere between a normal sine wave and a sawtooth. The Coulomb field acts tangent to the R vector sphere, and “(∇XY)p depends not on the vector field X but only on its value Xp at p.” ([1] pg. 309]  The way that the Coulomb field transmits radially is by centrifugal force through the gamma ray field.

The inside of an atom may be called a geodesic.  An electron path in an atomic orbital may also be called a geodesic, and “a long geodesic may not be minimal.” ([2] pg. 62)  This is due to the Lorentz force:

http://www.fruechtetheory.com/blog/2010/12/23/electron-orbitals-and-the-lorentz-force/

Gravity is an integral manifold.  Each orbital arc is a line integral absorbing gravitons.  The Coulomb field, on the other hand, is a charge induced diffeomorphism in the gamma ray field. Substantially outside of neutral atoms there is a propensity for positive and negative charges to cancel, though in the near field we have van der Waals forces.

Phonons for the Coulomb interaction are generated inside a charge.  The field created, that acts on another charge, may act on the outside of another charge, possibly only 5% of the diameter deep.  The fields may also act in the interspace, producing backflush to the charges that generate the fields.  Phonons of opposite chirality attract, and of the same chirality repel.

As points meet for the Coulomb force, the acceleration would be periodic, and relates to the vector potential.  A Fourier Series can be applied to the vector potential, with the direction of force being the side of the ‘x’ axis where the sine or cosine function has larger lobes.  Often a geodesic is called piecewise smooth, due to gravitons being separate, though on a classical scale the motion is smooth.

Two electrons can occupy the same atomic orbital if they have opposite half-integer spin projections.  This is the Pauli exclusion principle.  In terms of tensor math, “the subspaces are mutually orthogonal and each is a nontrivial irreducible subspace.” ([1] pg. 242)

[1] Boothby, William M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, 2003

[2] J. Milnor, based on lecture notes by M. Spivak and R. Wells, Morse Theory, Princeton University Press, 1969

One response so far

Feb 14 2022

Spin Drive

Published by under Quantum Field Theory

When an electron enters an atomic orbital, it receives a signal from the nucleus that changes and redefines its internal wavefunctions to a configuration that can accept more than 137 gravitons. It can then grow in diameter, mass, and charge. At the end of an arc, at a spin flip, the electron reduces to 1.3335 x 10-15 diameter and free electron structure. It is likely that another wave function signal comes immediately after the spin flip signal to set unlimited graviton absorption mode again. At the face of the earth, and at many other places in the universe, the gravitational field is very dense, and can carry many signals in the form of field quanta. I prefer to call them massless signals or messengers and give quantum field theorists the leeway to name them. Some names will come from existing tables.

A nucleus would know the number of electrons in orbit and exactly where they are in relation to the nucleus at any given time. An analogy might be a cell phone tower monitoring numerous cell phones in its vicinity.

It is acceptable to name gravitons differently when inside an electron because they can be greatly compressed. Wavelength is shorter and amplitude is normally smaller. In a large nucleus there would be wider variability with these parameters. In either instance, the gravitons are changed and compactified. Wave packets may form, such as with harmonics in music, selecting a few integer wavelengths to fit inside a longer wavelength, with position boundary conditions matching.

As for free electrons, these exchange gravitons as well. It is not two at a time exchange but a one for one exchange. This leaves the electron jiggling and/or pulsating.  Gravitons entering an electron drive the spin, even if they do not pass through. For this we have the example of the metal pump top:

http://www.fruechtetheory.com/blog/2010/06/15/muonic-states/

Once an electron escapes an orbital, as in metals, it reduces to free electron diameter and internal mode. It is only a free electron that continually produces a fundamental charge of 1.602 x 10-19 C.

No responses yet

Dec 04 2019

Electric and Magnetic Fields

Jon Rogawski has a cool diagram and calculation using Faraday’s Law on page 979 of his Multivariable Calculus book*. The magnetic field around the straight wire with an alternating current flowing in it produces a voltage in an adjacent looped wire with no conventional energy applied except that from the other wire.

Of course this magnetic field, and likewise for electric fields, must have a pervasive field in which to transmit. One may say it transmits through the air, however Faraday’s law also applies in space.

These E and B fields transmit by turning and bending the E and B fields of the dense gamma rays.

* Rogawski, Jon, “Multivariable Calculus”, W. H. Freeman and Company, c. 2008

One response so far

Oct 27 2019

Medical Uses

Took a walk on campus on this beautiful sunny autumn day, and when walking by the Microbial Sciences building it reminded me of possible medical uses for the gamma rays.  For example, using layers of high voltage plates, the gamma rays can be downscattered into lower energy gamma rays or x-rays.  The plates may be stepped down in area as traversing upward, so that specific wavelengths may be focused on smaller areas.

Most of the benefits of the general knowledge that we are in a dense gamma ray field will be found and developed by coming generations.  Nevertheless, the public already knows about the gamma ray field because gamma ray space telescopes have measured it since the 1990’s.  Medical research could be started without the researchers even knowing that it is gravity.

No responses yet

Aug 04 2019

Gamma Ray Field

It has been alluded to before on this website that the thick gamma ray field in which we reside is reminiscent of the aether.  A good book on the subject was written by Joseph Larmor.  Here is a sample:

“The basis of the present scientific procedure thus rests on the view, derivable as a consequence of general philosophical ideas, that the master-key to a complete unravelling of the general dynamical and physical relations of matter lies in the fact that it is constituted as a discrete molecular aggregate existing in the aether.” *

In the same paragraph, Larmor refers to “the properties of a continuum in space,”.

* Larmor, Joseph, AETHER AND MATTER, CAMBRIDGE AT THE UNIVERSITY PRESS, 1900, p. 78

No responses yet

Nov 05 2013

Pile Ups

Published by under Quantum Field Theory

When studying quantum field theory, we come across an array of virtual particles.  For more than three years I have been studying quantum field theory, and falling back on quantum mechanics for weeks or months at a time in the duration.

A while back it was stated that the static we typically see in Goldhaber plots generated from hadron colliding experiments may in part be due to a cascade of momentum generated through the gravitational field.  Continuing then with the same logic, when there is a pile up of colliding particles at one of the world’s particle accelerators, there is also a pile up of gravitons in the midst of the chaos, which then periodically spring back into action while helping to accelerate fragments of particles in various directions.  There is also a down scattering in energy of gravitons for some that are involved, mainly due to the fact that synchronization at the boundary of a hadron can be lost at such a time.  Detectors situated at various polar angles wait for the differential cross section results.

It is not unreasonable when enough experimentation is done that some results are repeatable.  “If m represents the rest mass of the exchanged particle, then a virtual particle can be created and exist for a time t without violating conservation of energy, as long as t is no greater than what is permitted by the uncertainty relationship: ћ/mc2.” *  Still, it is a relief to know that conservation of energy is not violated.  Gravitons piling up provide the excess energy that is needed.

 

*  Krane, Kenneth, Introductory Nuclear Physics, John Wiley and Sons, Inc., 1988, pg 654

 

4 responses so far

Aug 14 2011

Topology of the Vacuum

Whether we are looking at nuclear fission or the results of scattering experiments, the way spin-parity assignments are often kept in order in nature would be similar to the cause of a de Broglie wavelength.  Rotational states ratchet through the gravitational flux, with potential wells rising and falling in one of the most fundamental of quantum phenomenons that exist.

During and shortly after high flux, high velocity hadron collisions at Fermilab or the CERN LHC nevertheless, some of the scattering resonances seen may be due to a blitz through the gravitational field, not organized very well in a manner, for example, such as an electric field.  The static we typically see in Goldhaber plots generated from hadron colliding experiments may in part be due to a cascade of momentum generated through the gravitational field.

Another evidence of the gravitational field is the Bohm-Aharonov effect.  As Ryder puts it, “the Bohm-Aharonov effect owes its existence to the non-trivial topology of the vacuum, and the fact that electrodynamics is a gauge theory.  In fact, it has recently been realized that the vacuum, in gauge theories, has a rich mathematical structure, with associated physical consequences,” ([1], pg 101).

Astronomically, and for the sake of history, it is somewhat reminiscent of the luminiferous aether.

Another concept related here is that “the configuration space of the vacuum is not simply connected.” ([1], pg 102)  When we speak of ‘one loop’ consequences, we can liken it to the Cauchy integral, which Greiner calls “The surprising statement of the integral formula (4.16), namely, that it is sufficient to know a function along a closed path to determine any function value in the interior,” ([2], pg 109).  For those more willing to trust the mathematicians for pure math, the Cauchy integral formula is presented in Brown and Churchill:

f(z) = (1/2πi) ∫ (1/(s-z)) f(s) ds                     ([3], pgs 166 and 429)

With “the gauge invariance of electrodynamics” ([1], pg 97), the perfect balance of charge that exists in the near universe, – possibly the entire universe, and the quantum steps of the Coulomb force by phonon transmission, the Bohm-Aharonov effect does indeed show us that there are physical consequences to the vacuum that are non-trivial, relating to the gravitational field in which the Bohm-Aharonov test and other tests are set up and run.

As a final thought, it is probable that planar electromagnetic waves would not turn into spherical electromagnetic waves were it not for traveling through a gravitational field.

 

[1] Ryder, Lewis H., Quantum Field Theory, Second Edition, Cambridge University Press, 1996

[2] Greiner, Walter, Classical Electrodynamics, First German edition, Klassische Elektrodynamik, 1991 Verlag Harri Deutsch. 1998 Springer-Verlag New York, Inc.

[3] Brown, James Ward and Churchill, Ruel V., Complex Variables and Applications, Eighth Edition, McGraw-Hill Higher Education, 2009

No responses yet