Archive for June, 2023

Jun 29 2023

Vector Bosons and Other Fleeting Field Particles

Published by under Quantum Field Theory

In the case of “ ‘intermediate vector bosons’: the charged bosons W+ and W“ ([1], pg. 363), it is possible that they may be Coulomb field inductors. Since it takes many gravitons to make up an inductor, it is reasonable to measure “MW = 80.40 GeV” at a test setup sensor.

When two positive inductors meet head on in the open gamma ray field, they annihilate each other. The same is true for two negative inductors. If two inductors of the same charge annihilate at a sensor, the mass may be higher, as in “MZ = 91.19 MeV”, which may be the “neutral Z0 boson”. Some extra gravitons may get into the act here, and since the vector summation of the gamma ray field is in the Z direction, this boson is appropriately named.

It is not being said that all field particles are due to the Coulomb field, just some of them. The time these particles exist is “ħ /mc2“ ([2], pg. 654). Mandl and Shaw allude that “some quantity in the vacuum is non-vanishing” ([1], pg. 404). It has been known since 2005 that the vacuum is not really a vacuum.

As far as J representing charged mass, Ryder mentions “The source J(t) plays a role analogous to that of an electromagnetic current, which acts as a source of the electromagnetic field.” ([3], pg. 175).


The “renormalized charge er” ([1], pg. 336) and “renormalized mass mr” can be thought of as the charge and mass of the electron immediately after a spin flip at the end of an atomic orbital arc. Somewhere in the middle of an electron orbital arc these are called “ ‘running mass’ and ‘running charge’ “.

Zee says that “free quarks have not been observed” ([4], pg. 377), though with the quark coincidence, something with the same energy has been observed with the gamma ray telescopes.

[1] Madl, Franz and Shaw, Graham, “Quantum Field Theory”, John Wiley and Sons, Ltd., 2011

[2] Krane, Kenneth S., “Introductory Nuclear Physics”, c. 1988, John Wiley & Sons, Inc.

[3] Ryder, Lewis H., “Quantum Field Theory, Second Edition”, Cambridge University Press, 1996

[4] Zee, Anthony, “Quantum Field Theory in a Nutshell”, Princeton University Press, 2010

No responses yet